Nomenclature
M : Mach number
Pt : total(stagnation) pressure
Tt : total(stagnation) temperature
: mass flow rate from ambient condition
: mass flow rate at nozzle throat
: mass flow rate at diffuser exit
1. 서 론
초음속 비행체 개발 시, 고고도 비행 환경을 모사하여 유동 특성을 이해하고, 설계 변수와 비행체 성능을 평가, 운용 한계를 파악하는 것은 필수적이다. 그러나, 비행시험을 통한 연구는 재정적인 측면뿐 아니라 인적 및 안전상의 여러 제약/고려사항이 존재한다. 그러므로, 비행시험 전 설계 단계에서, 운용 환경을 고려한 지상 시험 수행은 필수적이다. 고고도 환경에서 운용하는 초음속 비행체에 대한 지상에서의 유동 및 연소 시험을 위해서는 저압 환경에서 충분한 유량을 모사할 수 있는 규모의 시설이 필요하다. 이러한 초음속 유동 환경을 모사하기 위해서, 자유류 및 준자유류 시험을 고려할 수 있다.
초음속 유동 모사 시험은 시험모델 주변 전체에 설계 마하수의 자유류가 존재하는 방식(freejet)과 비행체의 흡입구 영역만 자유류에 노출되는 준자유류 방식(semi- freejet)으로 나눌 수 있다[1]. 자유류 시험에서는 노즐에서의 유동이 시험모델 전체를 포함하기에, 전체 흡입구 압축 시스템을 고려할 수 있고, 추진 기관이 필요로 하는 유량에 비해 더 많은 유량이 시험부에 흐르게 된다. 반면, 준자유류 시험에서는 시험 시설의 제약으로 인해, 노즐의 Mach Rhombus 영역(목표 마하수 유동 영역) 크기 정도의 흡입구 압축 시스템이 주로 시험 대상으로 고려되지만, 시설의 규모를 감소시킬 수 있는 장점이 존재한다[2]. 이러한 시험 방식은 초음속 공기 흡입식 비행체 연구 개발 과정에 다양하게 적용되었다[3].
이러한 자유류/준자유류 시험 방식을 활용하거나, 관련 시험 방식 개발을 위한 연구는 최근까지 국/내외에서 다양하게 이루어지고 있다.
미국에서는 jet stretcher 구조물을 활용하여 자유흐름 유동의 질을 높이고, 노즐 후류의 전단면에 의한 충격파가 시험모델에 끼치는 영향을 줄이는 방안에 대한 CFD 해석 연구가 수행된 바 있다[4]. 또한, 호주의 Doherty[5] 등은 축소 모델을 이용한 마하수10 조건의 자유류 시험을 수행했으며, Chan[6] 등은 마하수7.5, 고도29.5km 환경에서 HIFiRE7 스크램제트 엔진 모델에 대한 자유류 시험을 수행하여 연료 분사에 따른 유동 특성을 파악하였다. 또한, Toniato[7]는 마하수 12 조건의 환경을 모사하기 위한 노즐 설계와 팽창 튜브를 활용하여 스크램제트 엔진 모델의 자유류 시험을 수행한 바 있다. 중국에서는 자유류 환경에서의 시험 통해 cavity-type 램제트 엔진의 성능 분석을 수행하였다[8]. 이처럼, 자유류 시험을 통해서는, 조건에 따른 추진기관의 성능을 확인하는 시험이 주로 수행되었다.
준자유류 시험에 대한 연구 또한, 다양하게 수행되고 있다. 일본의 Taguchi[2]는 초음속 추진 기관 시험을 위한 준자유류 시험 설비에 대한 연구를 수행한 바 있다. 미국과 중국에서는 초음속 흡입구와 격리부(isolator)의 흡입구 유동 불안정에 대한 연구를 수행하였다[9,10,11,12]. 국내에서는, 초고속 비행체 시험을 위한 고고도 환경 모사 시험 설비를 고려하여 모델 형상에 따른 시험 및 수치해석을 통해 시설의 운용 범위 연구를 수행한 바 있다[13]. 또한, 국내 설비를 활용하여 실기체급 비행체 모델에 대한 마하수4 준자유류 시험을 수행하였으며, 이를 통해 내부 유동 및 연소 모사 특성을 확인하였다[1].
자유류/준자유류 시험 시에는, 시험모델의 해석 대상 구조물이 목표하는 마하수 유동 영역에 존재하도록 구성해야하며, CFD해석 또는 해석학적 분석을 통해 적절한 위치 선정이 중요하다.
준자유류 시험에서 이러한 목표 마하수 유동 영역을 Mach Rhombus 구조로 볼 수 있으며, 이를 파악하는 것이 중요하다. Mach Rhombus는 노즐 후방에서 충격파와 팽창파의 상호작용으로 인해 마름모 형태의 기하학적 구조를 형성하는 유동 현상을 말한다. 이 영역 내에서의 유동은 노즐 중심축 방향(길이 방향)과 유사하다고 볼 수 있으며, 이 영역에 시험모델이 위치하게 되면 목표 마하수의 균질한 유동을 확보할 수 있게 된다. 이러한 특징의 Mach Rhombus 영역에 시험모델을 위치시킴으로써 준자유류 시험을 설계한다.
본 연구에서는, 사각 단면을 갖는 초음속 흡입구 시험모델의 준자유류 시험 준비 과정에서 수행된, Mach Rhombus 영역 내 시험모델 위치 선정 및 유동 안정성 분석을 위한 CFD 해석 과정과 그 결과를 나타내고 있다.
2. 본 론
2.1 시험모델 형상
해석을 위한 시험부 형상은 Fig. 1과 같다. 노즐 목 중심을 기준으로 축 대칭 형상으로 구성되어 있다. Fig. 1의 (A)는 대기압의 외부 공기가 유입되는 외부 유동 유입부를 나타내고, (B)는 목표 마하수의 유동장을 모사하기 위한 노즐 구조물이다. (C)는 시험모델을 나타내고 있다. (D)는 튜브형 디퓨저로, 노즐에서의 유동이 후방으로 안정적으로 흐를 수 있도록 도와주는 역할을 한다.
노즐의 경우, 출구 마하수를 2.3으로 설정하여 MOC (method of characteristics) 기법을 적용하여 형상 설계하였다. 디퓨저 형상의 경우, 시험부에서는 동일 단면적의 튜브 형태로 구성되었으나, 후방으로 갈수록 면적이 커지며 대기압과 동일한 조건이 된다. 본 연구에서는, 계산 시간을 고려하여, 전체 디퓨저의 일부 구간만 모사 하였다.
흡입구 모델은 Fig. 2와 같다. 2D 폐쇄형 흡입구(흡입구 덮개 고려)를 갖고 있으며, 비행체 구조물과의 결합을 위한 다이버터(diverter)가 단순화된 형태로 구성되어 있다. 해석을 위해 모든 면이 wall 경계조건으로 설정되었다.
다이버터에는 시험모델 지지대가 연결되어 있다. 모델의 후방동체의 경우, 구조 단순화를 위해 보트테일의 경사면은 존재하지 않으며, 기저면(base surface)은 직각으로 꺾이는 형상을 가진다.
2.2 해석 전처리 과정
본 연구의 CFD 해석에는 상용 소프트웨어인 STAR CCM+가 사용되었다. Table 1과 2는 계산 도메인의 경계조건과 해석에 고려된 유동 모델을 나타내고 있다. 시험모델과 시험부 벽면(Fig. 1의 회색 영역)은 wall 경계조건으로 설정하였다.
Table 1.
Solver models.
| Parameter | Setting |
| Fluid | Steady State, 3D, Air, Ideal gas |
| Model | RANS, SST, Coupled Energy, All y+ wall treatment |
Table 2.
Boundary conditions.
| Region | Setting |
|
External flow inlet |
Mass flow inlet Input: |
|
Nozzle throat |
Stagnation inlet Input: - Total pressure(Pt): 712 kPaA - Total temperature(Tt): 530 K |
|
Diffuser outlet |
Outlet Constraint: |
실기체 시험의 예비 설계 단계 해석에는 높은 정밀도의 유동 분석보다 전체적인 유동의 경향을 파악하고 빠른 해석 시간을 확보하는 것이 중요하다. 그래서, 본 해석 준비에는 다양한 난류 모델이 사전 검토되었으나, 상대적으로 단순한 노즐 유동 특성과 전체 해석 시간을 고려하여, RANS 모델을 적용하였다. 또한, 상대적으로 높은 와류 분석력을 위해 k-w SST 모델을 선정하였고, 이후에 보완이 필요한 부분은 시험을 준비하는 과정에서 추가 분석을 수행함으로써 해결하고자 한다.
외부 유동 유입부에서는 대기압의 일정 질량 유량()이 유입되는 환경을 모사했고, 노즐목은 고도 조건을 고려하여, 마하수1.0 유동이 유입될 수 있도록, 등엔트로피 유동 관계식을 적용하여 압력 및 온도 설정을 수행하였다.
디퓨저 출구 경계조건은, 디퓨저 후방 및 노즐목을 제외하고는 완전 밀폐된 형태의 시험부 해석 도메인을 고려할 때, Pressure Outlet 설정 시 질량 유량 불균형 문제가 발생했으며, 이를 고려하여, Outlet 조건과 질량유량 제약조건을 설정하였다. 이때에는, 계산을 통해 획득된 노즐목 질량 유량()과 유입 외부 유동 질량 유량()을 고려하였다.
Fig. 3은 노즐부 주변의 격자 조밀도를 나타내고 있다. 노즐목 부분과 흡입구 영역 주변으로 조밀한 격자 분포를 갖고 있으며, 유동의 흐름 방향을 고려하여, 격자의 조밀도를 차등화하였다. 격자 cell은 다면체 형상 기반으로 생성하였으며, 프리즘 레이어를 구성하여 벽면 유동 포착을 염두하였다.
첫 번째 격자 cell의 y+는 노즐 내벽에서는 최대 3.7, 흡입구 시험모델 기준으로는 4.1이 산출되었다. 노즐 내벽의 경우, 노즐 목 부근에서 높은 y+값이 계산되었고, 시험모델에서는 다이버터와 지지대 시작점 등의 높은 속도의 유동이 구조물과 부딪치는 영역에서 주로 큰 y+값이 산출되었다. 노즐 끝단의 마하수 분포가 이론적 해석 결과(M2.3)와 유사하였고, 시험모델의 경우 큰 y+값 발생 위치가 흡입구 후방에 주로 존재하고, 초기 해석을 통해 노즐부와 흡입구 덮개로의 유동 영향성이 적음을 확인하였기에, 추가적인 격자 수정 없이 해석을 진행하였다.
노즐 유동 분석을 위한 흡입구 미고려 시에는 약 856만 개의 격자 cell이 구성되었고, 흡입구 시험모델이 포함된 경우에는 높은 정확도를 위해 약 1800만개의 cell이 구성되었다.
또한, 흡입구 시험모델의 비대칭 형상에 의한 후류 불안정을 고려하여, 계산 초기 안정화 이후 CFL 값을 100으로 설정하였으며, 흡입구 덮개부 표면의 압력 변화 폭이 100 Pa 수준이었으며, 이는 수치적 오차라 판단하였고, 최종적으로 계산의 수렴 및 완료를 확인하였다.
해석 과정은 다음과 같다. 먼저 시험모델이 존재하지 않는 경우, 노즐에 의한 유동 특성을 파악하고, 이에 맞게 시험모델의 배치를 결정한다. 이후, 시험모델이 고려된 상태에서의 해석을 수행하여 유동 구조 및 불안정성 분석을 수행한다.
2.3 노즐부 유동 분석
Fig. 4는 시험모델이 존재하지 않는 시험부의 유동장을 나타내고 있다. 노즐 끝단에서는 벽면 경계층을 제외한 유동에서 마하수2.3의 유동 분포가 확인되었으며, 노즐 설계 결과가 정확히 반영된 것을 확인하였다. 또한, 노즐부 유동 특성은 유선을 통해 유동 흐름을 파악할 수 있다.
외부 유동 유입부에서 유입된 유동과 원형 튜브 형태의 디퓨저 외부 유동은 노즐 유동 분사에 의한 압력 차이로 디퓨저로 유입된다. 이때 노즐 출구 주변 유동 압력은 대기압에 가까우나, 노즐 출구 영역에서의 유동압력은 대기압 보다 작게 되어 과소 팽창(under expansion)된 유동이 관찰된다.
준자유흐름 시험을 위해서는 노즐의 Mach Rhombus 영역을 확인하여, 이에 맞게 시험모델을 설치하는 것이 필요하다. 이를 위해, Fig. 5와 같이, 시험모델이 존재하지 않는 조건에서의 Mach Rhombus 영역을 확인하였다. 실험적 오차를 고려하여 마하수 2.29~2.31 영역을 나타내었으며, 설계된 노즐을 이용하여 목표 마하수 유동의 준자유류 시험 수행이 가능함을 확인하였고, 이 영역을 기반으로 시험모델 배치 위치를 선정하였다.
노즐 끝면에서의 자유류 속도 분포는 Fig. 6과 같다. 노즐목에서 유동의 흐름 방향을 +x축, 이에 수직한 방향을 z축으로 설정하였으며, 오른손 법칙을 적용하여 y축을 설정하였다. 이후, 이를 기준으로 노즐 출구면에서의 유동 속도 균질성을 확인하였다.
Fig. 6(a)는 z축 속도 분포, Fig. 6(b)는 y축 속도 분포를 나타내며, 노즐 구조물 주변 영역 외에는 0에 가까운 속도가 발생함을 알 수 있다. 이를 통해, 본 연구에서 고려된 노즐 형상의 Mach Rhombus 영역에서는 x-축 방향의 유동이 주를 이루는 상대적으로 균질한 유동이 형성됨을 확인하였다.
2.4 시험모델의 유동 영향성
앞 절에서 확인된 노즐 내부의 Mach Rhombus 영역을 고려하여, 시험모델을 배치하였다. 흡입구 전면이 Mach rhombus 영역에 포함될 수 있도록 하였으며, 해석을 통해 노즐 주변부와의 유동 간섭이 크지 않도록 미세한 조정을 수행하였으며, 해당 과정은 설계자의 경험 및 관점을 기반으로 수행되었다. 위치 선정 시에는, 시험모델 노즈 팁 위치를 조절하며 유동 구조, Mach Rhombus 내 설계 마하수 유지 여부, 노즐 후방 유동과의 교란 등을 3차원 유동을 고려하여 검토하였다.
최종적으로 시험모델 배치가 완료된 이후, CFD 해석을 통해, 노즐과 시험모델 사이의 유동 간섭이 없는지 확인하였으며, 그 결과는 Fig. 7, 8과 같다.
본 연구에서는 흡입구 덮개 모사를 위해, 보수 적으로 2단 압축각에 비해 큰 값을 갖는 1단 압축 램프의 덮개를 고려하였으며, 이로 인해 단일 경사 충격파가 발생함을 알 수 있다(Fig. 7).
시험모델 노즈팁 부분은 정체점 위치로 고려할 수 있으며, M2.3 유동이 수직 충격파를 지난 후의 유동 특성과 비교하였다. 이론적으로 수직 충격파 이후의 전압력은 약4.15 bar 수준이었으며, 해석 결과상에서는 노즈팁 전방 유동의 전압력이 4.2 bar 수준으로 계산되었다. 이를 통해, 해석 결과의 신뢰성을 확인하였다.
Mach Rhombus 영역 내에서 노즈 팁으로 M2.3의 유동이 유입되는 것을 확인했으며, 이로 인해 형성된 경사 충격파는 노즐 출구 벽면 방향으로 반사되게 된다.
상부(+z축) 방향으로 반사된 충격파는 노즐 출구 벽면 부근에서 반사되어 시험모델 상단부와의 간섭을 일으키며 후방으로 유동이 흐르게 된다.
시험모델 하단부 영역 유동의 경우, 노즈팁에서의 충격파가 노즐 벽면으로 부딪치도록 하지 않고, 노즐 출구 후방으로 빠져나가고 있다. 이후 흡입구 덮개 경사면의 하부 끝단의 카울팁(cowl tip) 부분에서는 급격한 팽창으로 인해 속도가 증가함을 확인할 수 있다. 이후 시험모델 후방의 기저면에서 큰 와류가 발생하는 유동 구조가 확인된다.
Fig. 8은 시험모델을 상부에서 바라본 유동 구조이며, 노즐목 중심을 원점으로 할 때, z축 법선을 갖는 평면의 유동장을 나타낸다. 폐쇄형 흡입구로 인해, bow shock 형태의 충격파 구조가 관찰되었다.
흡입구 형상은 좌우 대칭이나 흡입구 이후에 다이버터와 모델 지지대가 있으며 이는 비대칭 유동 구조를 형성하게 된다. 지지대가 설치된 면에서의 유동은 반대편에 비해 복잡한 것을 볼 수 있다.
전면에서 유입된 유동은 다이버터를 거쳐 지지대를 지나며 압력을 상승하게 된다. 그러나, 지지대 두께가 크지 않고, 흡입구 면으로부터 후방에 위치하므로 지지대에서의 압력 증가가 전방으로 영향을 끼치는 모습은 포착되지 않았다.
Fig. 9는 시험모델 표면과 주변의 압력 유동장 변화를 나타낸 것이다. 주변 유동장은 각 지점에서의 단면을 나타내었으며, Fig. 9(a)는 흡입구 덮개 전방 1cm 지점에서의 단면을 나타낸 것이다. (b)는 노즈팁 기준으로 노즐목 직경 대비 20% 지점, (c)는 40%, (d)는 60%, (e)는 80%, (f)는 100%, (g)는 200%, (h)는 300%, (i)는 400% 위치에서의 유동 단면의 압력 분포를 각각 나타내고 있다.
Fig. 9(a)에서는 유입 유동의 압력 균질성이 높으며, 대체적으로 균일한 방향의 유동이 Mach rhombus 내에 형성됨을 확인할 수 있다. Fig. 9(b)는 시험모델 노즈팁 이후의 유동장을 나타내고 있다. 흡입구 노즈팁에서 발생한 충격파로 인해 압력이 상승한 것을 확인할 수 있으며, (b)~(c) 구간에서는 흡입구 덮개에 충돌한 유동이 흡입구 측벽으로 퍼져나가는 모습을 볼 수 있다. 또한, 흡입구의 경사면 위치 및 형상으로 인한 유속 차이로 인해 흡입구 주변에서 유동의 회전이 발생함을 확인하였다. (d)는 노즐 출구 후방 단면의 압력 분포를 나타내고 있다. 노즐 출구와 시험모델 카울 팁 사이의 초음속 유동이 강한 충격파를 거치며 감속되며, 이로 인해 압력의 급격한 상승이 나타났다. 이는, 유동의 흐름을 방해하는(blockage) 시험모델의 역할로 인한 노즐목에서의 유동이 시험모델 주변부로 빠져나가야 하는 조건과, 노즐 출구부의 고속 유동과 시험모델에서 발생한 충격파로 인한 유동 간섭이 중첩되어, 강한 충격파가 발생하는 것으로 보인다. 이후, (e)에서는 팽창파 발생으로 흡입구 주변 압력은 감소하고, (f)에서는 다이버터 장착물로 인해 압력이 상승하는 것을 볼 수 있다. 다이버터 기준으로 상하부의 유동 특성이 다르기에, 상/하부면의 압력 분포에는 차이가 있었으며, 상부면의 압력이 보다 높은 값을 나타내었다. (g)에서는 지지대 구조물 전방부에서의 강한 압력 상승을 볼 수 있으며, 이후 (h)와 (i)에서는 모델 주변의 특별한 압력 분포는 확인하지 못하였다. Fig. 9(h)와 (i)에서는 시험모델 표면과 지지대부의 압력 분포를 전체적으로 확인할 수 있는데, 노즐 유동와 시험모델 사이의 충격파 간섭으로 인해 고압/저압의 분포가 반복적으로 발생하는 것을 볼 수 있다. 이를 통해, 시험 진행 중, 급격한 압력 변화에도 진동을 최소화하며 안정적으로 지지할 수 있어야 함을 알 수 있다.
전체적으로 후방 유동의 전방 유동으로의 전달은 확인하지 못하였으며, 후방 구조의 비정상성(unsteadiness)에도 불구하고, 흡입구 덮개 표면의 압력 분포 및 값은 일정한 것으로 보아, 해당 해석 결과를 통한 시험모델 배치가 적절히 수행되었고, 시험 설계 예비 단계에서의 검증이 확인된 것으로 볼 수 있다.
3. 결 론
본 연구에서는 M2.3 준자유류 시험 초기 설계 단계에서 계획된 CFD 해석을 준비 및 수행, 그 결과를 분석하였다. 해석 도메인은 설계 마하수 유동을 형성하는 노즐부, 시험모델부, 후방 튜브형 디퓨저로 구성된다.
준자유류 시험 시, 시험모델의 흡입구 영역을 Mach Rhombus 내에 포함하는 것이 중요하며, CFD 해석을 통해 적절한 위치 선정을 수행하였다. 이후, 수치적 계산을 통해 노즐과 흡입구 구조물 사이의 유동 간섭을 확인하였으며, 시험모델 지지대에 의한 유동 불안정성을 검토하였다.
해석 결과, 시험모델의 흡입구 덮개로 유입되는 유동은 설계 마하수(M2.3)에 도달하였으며, 흡입구 후방 영역의 유동은 흡입구 덮개에 미치는 영향이 없음을 흡입구 덮개 압력 분포 수렴도를 통해 확인하였다.
노즐부와 시험모델 간의 유동 분석 결과, 본 연구에서 고려된 흡입구 시험모델은 노즐 중심점 기준으로 노즐목 직경의 약1.72배(x축), 0.36배(z축) 위치에 시험모델 노즈부 중심점의 위치 설정이 필요함을 확인하였다. 이러한 결과는, 시험모델 위치를 조정하며 여러 번의 해석을 수행하여 도출된 결과이며, CFD 해석을 통해 이론적인 접근이 아닌 경계층의 영향을 고려한 모델의 위치를 선정할 수 있었다.
최종적으로, 해석 결과 분석을 통해, 시험 수행을 위한 초기 설계 단계에서의 시험모델 배치를 결정할 수 있었고, 유동적으로 안정적인 시험이 수행될 수 있음을 확인하였다.











